Physicochemical Properties
Molecular Formula | C49H65N11O16S3 |
Molecular Weight | 1160.29950785637 |
Exact Mass | 1159.377 |
CAS # | 70706-98-8 |
Related CAS # | Sincalide;25126-32-3 |
PubChem CID | 145712427 |
Appearance | White to off-white solid powder |
Hydrogen Bond Donor Count | 14 |
Hydrogen Bond Acceptor Count | 20 |
Rotatable Bond Count | 33 |
Heavy Atom Count | 79 |
Complexity | 2180 |
Defined Atom Stereocenter Count | 7 |
SMILES | S(C)CC[C@@H](C(N[C@H](C(N[C@H](C(N)=O)CC1C=CC=CC=1)=O)CC(=O)O)=O)NC([C@H](CC1=CNC2C=CC=CC1=2)NC(CNC([C@H](CCSC)NC([C@H](CC1C=CC(=CC=1)OS(=O)(=O)O)NC([C@H](CC(=O)O)N)=O)=O)=O)=O)=O.N |
InChi Key | SKHSHPLUIPFDPM-ITZXPNBCSA-N |
InChi Code | InChI=1S/C49H62N10O16S3.H3N/c1-76-18-16-34(55-47(69)37(58-44(66)32(50)23-41(61)62)21-28-12-14-30(15-13-28)75-78(72,73)74)45(67)53-26-40(60)54-38(22-29-25-52-33-11-7-6-10-31(29)33)48(70)56-35(17-19-77-2)46(68)59-39(24-42(63)64)49(71)57-36(43(51)65)20-27-8-4-3-5-9-27;/h3-15,25,32,34-39,52H,16-24,26,50H2,1-2H3,(H2,51,65)(H,53,67)(H,54,60)(H,55,69)(H,56,70)(H,57,71)(H,58,66)(H,59,68)(H,61,62)(H,63,64)(H,72,73,74);1H3/t32-,34-,35-,36-,37-,38-,39-;/m0./s1 |
Chemical Name | (3S)-3-amino-4-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-1-oxo-3-(4-sulfooxyphenyl)propan-2-yl]amino]-4-oxobutanoic acid;azane |
HS Tariff Code | 2934.99.9001 |
Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
ln Vitro | As a new cardiovascular hormone, sincalide ammonium (Cholecystokinin octapeptide ammonium, or CCK-8 ammonium) significantly inhibits myocardial fibrosis in noninfarcted areas. Moreover, sincalide ammonium is beneficial in the battle against apoptosis, inflammation, and collagen deposition. H9c2 cardiomyoblasts are shielded from Ang II-induced apoptosis by CCK-8 (ammonium), in part because of the activation of the CCK1 receptor and the PI3K/Akt signaling pathway. |
ln Vivo | In a MI rat model, sincalide ammonium (also known as Cholecystokinin octapeptide ammonium, or CCK-8 ammonium) reduces fibrosis in the noninfarcted areas and postpones left ventricular remodeling and the development of heart failure[4]. |
Animal Protocol |
Animal/Disease Models: MI rat model[4] Doses: 50 μg/kg Route of Administration: ip; 50 μg/kg/d; for 4 weeks Experimental Results: Had significant inhibitory effect on myocardial fibrosis in noninfarcted areas. |
References |
[1]. Maher KA. Kinevac (sincalide for injection)/Squibb Diagnostics. Gastroenterol Nurs. 1991 Oct;14(2):98-100. [2]. Ziessman HA. Sincalide: A Review of Clinical Utility, Proper Infusion Methodology, and Alternative Cholecystogogues. J Nucl Med Technol. 2019 Sep;47(3):210-212. [3]. Protective effect of cholecystokinin octapeptide on angiotensin II-induced apoptosis in H9c2 cardiomyoblast cells. J Cell Biochem. 2020 Jul;121(7):3560-3569. [4]. Cholecystokinin octapeptide reduces myocardial fibrosis and improves cardiac remodeling in post myocardial infarction rats. Int J Biochem Cell Biol. 2020 Aug;125:105793. |
Solubility Data
Solubility (In Vitro) | H2O : 12.5 mg/mL (10.77 mM) |
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.8618 mL | 4.3092 mL | 8.6185 mL | |
5 mM | 0.1724 mL | 0.8618 mL | 1.7237 mL | |
10 mM | 0.0862 mL | 0.4309 mL | 0.8618 mL |