PeptideDB

Silodosin-d4 (silodosin d4) 1426173-86-5

Silodosin-d4 (silodosin d4) 1426173-86-5

CAS No.: 1426173-86-5

Silodosin-d4 is the deuterated form of Silodosin. Silodosin (KAD 3213; KMD 3213) is a specific, orally bioactive α1A-ad
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Silodosin-d4 is the deuterated form of Silodosin. Silodosin (KAD 3213; KMD 3213) is a specific, orally bioactive α1A-adrenergic receptor (α1A-AR) blocker. Silodosin shows a high affinity to α1A-AR (Ki=0.036 nM), which is 162 and 50 times higher than that of α1B-AR and α1D-AR, with Kis of 21 nM and 2.0 nM respectively. Silodosin is an effective and well-tolerated reagent for LUTS/BPH studies.

Physicochemical Properties


Molecular Formula C25H28D4F3N3O4
Molecular Weight 499.56
Exact Mass 499.259
CAS # 1426173-86-5
Related CAS # Silodosin;160970-54-7
PubChem CID 156588775
Appearance Typically exists as solid at room temperature
Density 1.2±0.1 g/cm3
Boiling Point 601.4±55.0 °C at 760 mmHg
Flash Point 317.5±31.5 °C
Vapour Pressure 0.0±1.8 mmHg at 25°C
Index of Refraction 1.552
LogP 2.52
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 9
Rotatable Bond Count 13
Heavy Atom Count 35
Complexity 654
Defined Atom Stereocenter Count 1
SMILES

C(N1CCC2=CC(C[C@@H](C)NC([H])([H])C([H])([H])OC3C=CC=CC=3OCC(F)(F)F)=CC(C(=O)N)=C12)CCO

InChi Key PNCPYILNMDWPEY-JRBXURKDSA-N
InChi Code

InChI=1S/C25H32F3N3O4/c1-17(30-8-12-34-21-5-2-3-6-22(21)35-16-25(26,27)28)13-18-14-19-7-10-31(9-4-11-32)23(19)20(15-18)24(29)33/h2-3,5-6,14-15,17,30,32H,4,7-13,16H2,1H3,(H2,29,33)/t17-/m1/s1/i8D2,12D2
Chemical Name

1-(3-hydroxypropyl)-5-[(2R)-2-[[1,1,2,2-tetradeuterio-2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl]amino]propyl]-2,3-dihydroindole-7-carboxamide
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
References

[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. Maxime Rossi , Silodosin in the treatment of benign prostatic hyperplasia. Drug Des Devel Ther. 2010; 4: 291–297.

[3]. Effects by silodosin on the partially obstructed rat ureter in vivo and on human and rat isolated ureters.Br J Pharmacol. 2013 May;169(1):230-8.

[4]. Silodosin : a new subtype selective alpha-1 antagonist for the treatment of lower urinary tract symptoms in patients with benign prostatic hyperplasia.Expert Opin Pharmacother. 2012 Oct;13(14):2085-96.

[5]. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via ELK1 inactivation.Am J Cancer Res. 2015 Sep 15;5(10):2959-68. eCollection 2015.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0018 mL 10.0088 mL 20.0176 mL
5 mM 0.4004 mL 2.0018 mL 4.0035 mL
10 mM 0.2002 mL 1.0009 mL 2.0018 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.