PeptideDB

PBTZ169 1377239-83-2

PBTZ169 1377239-83-2

CAS No.: 1377239-83-2

PBTZ169 (PBTZ-169; Macozinone, an 8-Nitro-benzothiazinones (BTZs) analog) is a novel inhibitor of decaprenyl-phosphoribo
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

PBTZ169 (PBTZ-169; Macozinone, an 8-Nitro-benzothiazinones (BTZs) analog) is a novel inhibitor of decaprenyl-phosphoribose-epimerase (DprE1) that displays nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. DprE1 is an essential enzyme involved in the cell wall biosynthesis of Corynebacterineae. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. When tested against thirty Nocardia brasiliensis isolates, the MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs) at a concentration of 0.25X the in vitro value. The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT), at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity.


Physicochemical Properties


Molecular Formula C20H23F3N4O3S
Molecular Weight 456.48
Exact Mass 456.144
Elemental Analysis C, 52.62; H, 5.08; F, 12.49; N, 12.27; O, 10.51; S, 7.02
CAS # 1377239-83-2
Related CAS #
1377239-83-2
PubChem CID 57331386
Appearance Solid powder
Density 1.5±0.1 g/cm3
Boiling Point 555.6±60.0 °C at 760 mmHg
Flash Point 289.8±32.9 °C
Vapour Pressure 0.0±1.5 mmHg at 25°C
Index of Refraction 1.660
LogP 3.83
Hydrogen Bond Donor Count 0
Hydrogen Bond Acceptor Count 8
Rotatable Bond Count 3
Heavy Atom Count 31
Complexity 715
Defined Atom Stereocenter Count 0
SMILES

O=C1C2=CC(C(F)(F)F)=CC([N+]([O-])=O)=C2SC(N3CCN(CC4CCCCC4)CC3)=N1

InChi Key BJDZBXGJNBMCAV-UHFFFAOYSA-N
InChi Code

InChI=1S/C20H23F3N4O3S/c21-20(22,23)14-10-15-17(16(11-14)27(29)30)31-19(24-18(15)28)26-8-6-25(7-9-26)12-13-4-2-1-3-5-13/h10-11,13H,1-9,12H2
Chemical Name

2-(4-(cyclohexylmethyl)piperazin-1-yl)-8-nitro-6-(trifluoromethyl)-4H-benzo[e][1,3]thiazin-4-one
Synonyms

PBTZ-169;Macozinone; PBTZ169; PBTZ 169
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets DprE1
ln Vitro PBTZ169 (also known as Macozinone, an 8-Nitro-benzothiazinones (BTZs) analog) is a novel inhibitor of decaprenyl-phosphoribose-epimerase (DprE1) that displays nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. DprE1 is an essential enzyme involved in the cell wall biosynthesis of Corynebacterineae. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. When tested against thirty Nocardia brasiliensis isolates, the MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs) at a concentration of 0.25X the in vitro value. The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT), at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity.
ln Vivo
The in vivo activity was evaluated after infecting female BALB/c mice in the right hind food-pad. After 6 weeks, treatment was initiated with PBTZ169 and its activity was compared with the first generation compound, BTZ043. Both BTZ compounds were administered at 100 mg/kg twice daily by gavage, and sulfamethoxazole/trimethoprim (SXT), at 100 mg/kg sulfamethoxazole, was used as a positive control. After 22 weeks of therapy, only PBTZ169 and SXT displayed statistically significant activity. PBTZ169 can be suspend in 0.25% hydroxy-propylmethyl-cellulose. The administertration for PBTZ169 is 100 mg/kg by gavage. The MIC50 and MIC90 values were 0.0075 and 0.030 μg/mL, respectively. The MIC for PBTZ169 for N. brasiliensis HUJEG-1 was 0.0037 μg/mL.
Enzyme Assay PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2′-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro.
Cell Assay When tested against thirty Nocardia brasiliensis isolates, the MIC50 and MIC90 values for PBTZ169 were 0.0075 and 0.03 μg/mL, respectively. Because Nocardia is a potential intracellular bacterium, a THP-1 macrophage monolayer was infected with N. brasiliensis HUJEG-1 and then treated with PBTZ169, resulting in a decrease in the number of colony-forming units (CFUs) at a concentration of 0.25X the in vitro value.
Animal Protocol
100 mg/kg
BALB/c mice
References

[1]. Antimicrob Agents Chemother.2015 Aug;59(8):4446-52.

[2]. PLoS Negl Trop Dis.2015 Oct 16;9(10):e0004022.

[3]. EMBO Mol Med. 2014 Mar;6(3):372-83..

Additional Infomation Macozinone is under investigation in clinical trial NCT03036163 (Phase 1 Study of PBTZ169).

Solubility Data


Solubility (In Vitro) DMSO: 5~6.4 mg/mL ( 10.95~14.02 mM)
Water: <4 mg/mL
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1907 mL 10.9534 mL 21.9068 mL
5 mM 0.4381 mL 2.1907 mL 4.3814 mL
10 mM 0.2191 mL 1.0953 mL 2.1907 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.