PeptideDB

Micrococcin P1 (Micrococcin P1) 67401-56-3

Micrococcin P1 (Micrococcin P1) 67401-56-3

CAS No.: 67401-56-3

Micrococcin P1 is a macrocyclic peptide antibiotic and a potent inhibitor of HCV (hepatitis C virus) with EC50 range of
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Micrococcin P1 is a macrocyclic peptide antibiotic and a potent inhibitor of HCV (hepatitis C virus) with EC50 range of 0.1-0.5 μM. Micrococcin P1 has in vitro anti-bacterial effect against Gram-positive (Gram+) bacterial strains, with MICs of 2 μg/mL, 1 μg/mL and 1 against Staphylococcus aureus strain 1974149, Enterococcus faecalis 1674621 strain and Streptococcus pyogenes 1744264 strain, respectively. μg/mL. Micrococcin P1 is also a potent inhibitor of the malaria parasite Plasmodium falciparum.

Physicochemical Properties


Molecular Formula C48H49N13O9S6
Molecular Weight 1144.37
Exact Mass 1143.21
CAS # 67401-56-3
PubChem CID 91755078
Appearance White to yellow solid powder
LogP 7.665
Hydrogen Bond Donor Count 9
Hydrogen Bond Acceptor Count 22
Rotatable Bond Count 10
Heavy Atom Count 76
Complexity 2180
Defined Atom Stereocenter Count 6
SMILES

C/C=C\1/C2=NC(=CS2)C(=O)N[C@H](C3=NC(=CS3)C(=O)N[C@H](C4=NC(=CS4)C5=C(C=CC(=N5)C6=NC(=CS6)C7=NC(=CS7)C(=O)N/C(=C\C)/C(=O)NC[C@@H](C)O)C8=NC(=CS8)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)[C@@H](C)O)C(C)C

InChi Key MQGFYNRGFWXAKA-QMXXNAFJSA-N
InChi Code

InChI=1S/C48H49N13O9S6/c1-8-24(37(65)49-12-20(5)62)51-38(66)28-15-73-46(56-28)32-18-74-45(58-32)26-11-10-23-36(50-26)27-13-75-48(53-27)35(22(7)64)61-41(69)31-17-76-47(57-31)33(19(3)4)59-39(67)30-16-72-44(55-30)25(9-2)52-42(70)34(21(6)63)60-40(68)29-14-71-43(23)54-29/h8-11,13-22,33-35,62-64H,12H2,1-7H3,(H,49,65)(H,51,66)(H,52,70)(H,59,67)(H,60,68)(H,61,69)/b24-8-,25-9-/t20-,21-,22-,33+,34+,35+/m1/s1
Chemical Name

2-[2-[(12S,19S,26Z,29S)-26-ethylidene-12,29-bis[(1R)-1-hydroxyethyl]-14,21,28,31-tetraoxo-19-propan-2-yl-10,17,24,34-tetrathia-6,13,20,27,30,35,36,37,38-nonazahexacyclo[30.2.1.18,11.115,18.122,25.02,7]octatriaconta-1(35),2(7),3,5,8,11(38),15,18(37),22,25(36),32-undecaen-5-yl]-1,3-thiazol-4-yl]-N-[(Z)-1-[[(2R)-2-hydroxypropyl]amino]-1-oxobut-2-en-2-yl]-1,3-thiazole-4-carboxamide
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets HCV[1]; Bacterial[2]; Parasite[3]
ln Vitro Micrococcin P1 is extremely powerful, with a minimum inhibitory concentration (MIC) of 32–63 nM, according to dose-response studies. Cytotoxicity studies on the hepatic cell line HepG2 and the monocytic cell line THP-1 over a 40-hour period showed no discernible effect on cell line growth (<10% inhibition at 30 mM), resulting in a selectivity index larger than 500. examines Micrococcin P1's intracellular activities as well; it functions against M that expresses GFP. H37Rv TB developing inside RAW 264.7 macrophages, showing a potency similar to isoniazid at an IC80 of roughly 1 mM[1].
References

[1]. Micrococcin P1, a naturally occurring macrocyclic peptide inhibiting hepatitis C virus entry in a pan-genotypic manner. Antiviral Res. 2016 Aug;132:287-95.

[2]. Total synthesis of micrococcin P1 and thiocillin I enabled by Mo(vi) catalyst. Chem Sci. 2018 Dec 3;10(7):1971-1975.

[3]. Pyridinyl polythiazole class peptide antibiotic micrococcin P1, secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally. Eur J Biochem. 2001 Dec;268(24):6390-401.

Additional Infomation 13',19'-Didehydro-19'-deoxy-28,44-dihydro-44-hydroxymicrococcin P has been reported in Bacillus pumilus with data available.
See also: Micrococcin (annotation moved to).

Solubility Data


Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.8738 mL 4.3692 mL 8.7384 mL
5 mM 0.1748 mL 0.8738 mL 1.7477 mL
10 mM 0.0874 mL 0.4369 mL 0.8738 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.