PeptideDB

Mal-Val-Ala-PAB-N(SO2Me)-Exatecan 2575682-08-3

Mal-Val-Ala-PAB-N(SO2Me)-Exatecan 2575682-08-3

CAS No.: 2575682-08-3

Mal-Val-Ala-PAB-N(SO2Me)-Exatecan (Compound LE14) is a conjugate of the ADC toxin Exatecan and the linker Mal-Val-Ala-PA
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Mal-Val-Ala-PAB-N(SO2Me)-Exatecan (Compound LE14) is a conjugate of the ADC toxin Exatecan and the linker Mal-Val-Ala-PAB-N(SO2Me). Mal-Val-Ala-PAB-N(SO2Me)-Exatecan can be used to synthesize ADC FZ-AD005. FZ-AD005 is an ADC targeting delta-like ligand 3 (DLL3, KD=58.3 pM) and has antitumor activity against SCLC cancer.

Physicochemical Properties


Molecular Formula C56H65FN8O15S
Molecular Weight 1141.22
Exact Mass 1140.4274127
CAS # 2575682-08-3
Appearance Light yellow to yellow solid powder
LogP 1.6
SMILES

CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=C5[C@H](CCC6=C5C(=CC(=C6C)F)N=C4C3=C2)NC(=O)COCN(CCS(=O)(=O)C)C(=O)OCC7=CC=C(C=C7)NC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)CCCCCN8C(=O)C=CC8=O)O

InChi Key FHSDCZBBSIHLRF-WCBFANADSA-N
InChi Code

InChI=1S/C56H65FN8O15S/c1-7-56(75)38-23-42-50-36(25-65(42)53(72)37(38)27-79-54(56)73)48-40(17-16-35-31(4)39(57)24-41(61-50)47(35)48)60-44(67)28-78-29-63(21-22-81(6,76)77)55(74)80-26-33-12-14-34(15-13-33)59-51(70)32(5)58-52(71)49(30(2)3)62-43(66)11-9-8-10-20-64-45(68)18-19-46(64)69/h12-15,18-19,23-24,30,32,40,49,75H,7-11,16-17,20-22,25-29H2,1-6H3,(H,58,71)(H,59,70)(H,60,67)(H,62,66)/t32-,40-,49-,56-/m0/s1
Chemical Name

[4-[[(2S)-2-[[(2S)-2-[6-(2,5-dioxopyrrol-1-yl)hexanoylamino]-3-methylbutanoyl]amino]propanoyl]amino]phenyl]methyl N-[[2-[[(10S,23S)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]amino]-2-oxoethoxy]methyl]-N-(2-methylsulfonylethyl)carbamate
Synonyms

Mal-Val-Ala-PAB-N(SO2Me)-Exatecan; Mal-Val-Ala-PAB-N(SO2Me) Exatecan;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Topoisomerase; Camptothecins
ln Vivo Delta-like ligand 3 (DLL3) is overexpressed in small cell lung cancer (SCLC) and has been considered an attractive target for SCLC therapy. Rovalpituzumab tesirine was the first DLL3-targeted antibody-drug conjugate (ADC) to enter clinical studies. However, serious adverse events limited progress in the treatment of SCLC with rovalpituzumab tesirine. In this study, we developed a novel DLL3-targeted ADC, FZ-AD005, by using DXd with potent cytotoxicity and a relatively better safety profile to maximize the therapeutic index. FZ-AD005 was generated by a novel anti-DLL3 antibody, FZ-A038, and a valine-alanine (Val-Ala) dipeptide linker to conjugate DXd. Moreover, Fc-silencing technology was introduced in FZ-AD005 to avoid off-target toxicity mediated by FcγRs and showed negligible Fc-mediated effector functions in vitro. In preclinical evaluation, FZ-AD005 exhibited DLL3-specific binding and demonstrated efficient internalization, bystander killing, and excellent in vivo antitumor activities in cell line-derived xenograft and patient-derived xenograft models. FZ-AD005 was stable in circulation with acceptable pharmacokinetic profiles in cynomolgus monkeys. FZ-AD005 was well tolerated in rats and monkeys. The safety profile of FZ-AD005 was favorable, and the highest nonseverely toxic dose was 30 mg/kg in cynomolgus monkeys. In conclusion, FZ-AD005 has the potential to be a superior DLL3-targeted ADC with a wide therapeutic window and is expected to provide clinical benefits for the treatment of patients with SCLC [1].
References

[1]. FZ-AD005, A Novel DLL3-Targeted Antibody-drug Conjugate with Topoisomerase I Inhibitor, Shows Potent Antitumor Activity in Preclinical Models. Mol Cancer Ther. 2024 Oct 1;23(10):1367-1377.

[2]. , Preparation method of linker drug conjugate and intermediate thereof. CN116178386.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.8763 mL 4.3813 mL 8.7626 mL
5 mM 0.1753 mL 0.8763 mL 1.7525 mL
10 mM 0.0876 mL 0.4381 mL 0.8763 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.