(-)-JQ-1 is the (R)-Enantiomer of JQ1 or the stereoisomer of (+)-JQ1. While (+)-JQ1 has an IC50 of 77 nM and 33 nM for BRD4(1/2) in enzymatic assays, it is a potent and extremely specific BET (Bromodomain and extra terminal domain) bromodomain inhibitor. No bromodomains interact significantly with ()-JQ1. Additionally, the ()-JQ1 enantiomer is relatively inactive in nuclear protein in testis (NUT) midline carcinoma (NMC). In that it only binds to bromodomains from the BET family and not any other bromodomains, (+)-JQ1 has high specificity for BET. (+)-JQ1 may have anti-cancer properties against a number of cancers, including Multiple Myeloma (MM), Pancreatic Ductal Adenocarcinoma, and Ovarian Cancer. It functions by inhibiting c-MYC and increasing p21. In order to learn more about the function of BET bromodomains in the transcriptional control of oncogenesis, (+)-JQ1 was used as a chemical probe.
Physicochemical Properties
Molecular Formula | C23H25CLN4O2S | |
Molecular Weight | 456.99 | |
Exact Mass | 456.138 | |
Elemental Analysis | C, 60.45; H, 5.51; Cl, 7.76; N, 12.26; O, 7.00; S, 7.02 | |
CAS # | 1268524-71-5 | |
Related CAS # | (+)-JQ-1;1268524-70-4;JQ-1 (carboxylic acid);202592-23-2 | |
PubChem CID | 49871818 | |
Appearance | Light yellow to yellow solid | |
Density | 1.3±0.1 g/cm3 | |
Boiling Point | 610.4±65.0 °C at 760 mmHg | |
Flash Point | 322.9±34.3 °C | |
Vapour Pressure | 0.0±1.7 mmHg at 25°C | |
Index of Refraction | 1.657 | |
LogP | 4.49 | |
Hydrogen Bond Donor Count | 0 | |
Hydrogen Bond Acceptor Count | 6 | |
Rotatable Bond Count | 5 | |
Heavy Atom Count | 31 | |
Complexity | 706 | |
Defined Atom Stereocenter Count | 1 | |
SMILES | ClC1C([H])=C([H])C(=C([H])C=1[H])C1C2C(C([H])([H])[H])=C(C([H])([H])[H])SC=2N2C(C([H])([H])[H])=NN=C2[C@@]([H])(C([H])([H])C(=O)OC(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])N=1 |
|
InChi Key | DNVXATUJJDPFDM-QGZVFWFLSA-N | |
InChi Code | InChI=1S/C23H25ClN4O2S/c1-12-13(2)31-22-19(12)20(15-7-9-16(24)10-8-15)25-17(11-18(29)30-23(4,5)6)21-27-26-14(3)28(21)22/h7-10,17H,11H2,1-6H3/t17-/m1/s1 | |
Chemical Name | tert-butyl 2-[(9R)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetate | |
Synonyms |
|
|
HS Tariff Code | 2934.99.9001 | |
Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
Targets | BRD4 (IC50 = 33 nM); BRD4 (IC50 = 77 nM) |
ln Vitro | (+)-JQ1 enantiomer binds directly into the Kac binding site of BET bromodomains. By competitively binding BRD4 with chromatin at a concentration of (+)-JQ1 (500 nM), NMC cells' differentiation and growth are arrested. By reducing Ki67 staining, (+)-JQ1 (500 nM) inhibits the NMC 797 and Per403 cell lines' rapid proliferation. In NMC 797 cells, (+)-JQ1 (500 nM) significantly reduces the expression of both BRD4 target genes. In NMC 11060 cells, (+)-JQ1 inhibits cellular viability with an IC50 value of 4 nM. [1] In MM cell lines, (+)-JQ1 strongly inhibits MYC expression. KMS-34 and LR5 proliferation are both inhibited by (+)-JQ1 with IC50 values of 68 nM and 98 nM, respectively. (+)-JQ1 (500 nM)-treated MM.A significant reduction in the percentage of cells in the S-phase is caused by 1S cells, and cells arrested in G0/G1 are consequently more numerous. Using beta-galactosidase staining, (+)-JQ1 (500 nM) causes noticeable cellular senescence. The majority of the CD138+ patient-derived MM samples examined exhibit a significant reduction in cell viability following exposure to (+)-JQ1 (800 nM).[2] A GI50 of 98 nM for (+)-JQ1's ability to inhibit LP-1 cell growth. A greater proportion of LP-1 cells are in G0/G1 after treatment with (+)-JQ1 (625 nM). MYC, BRD4, and CDK9 expression in LP-1 cells is suppressed by (+)-JQ1 (500 nM).[3] In latently infected Jurkat T cells, (+)-JQ1 (1 μM) activates HIV transcription. Both Jurkat and HeLa cells are stimulated by (+)-JQ1 (50 μM) primarily Tat-dependent HIV transcription. In J-Lat A2 cells, (+)-JQ1 (5 μM) induces Brd4 dissociation, which allows Tat to attract SEC to the HIV promoter and trigger Pol II CTD phosphorylation and viral transcription. In Jurkat T cells, JQ1 partially separates P-TEFb from 7SK snRNP and enables Tat to increase CDK9 T-loop phosphorylation. [4] |
ln Vivo | In mice with NMC 797 xenografts, (+)-JQ1 (50 mg/kg) prevents tumor growth. In mice with NMC 797 xenografts, (+)-JQ1 (50 mg/kg) causes effacement of NUT nuclear speckles, which is consistent with competitive binding to nuclear chromatin. Strong (grade 31) keratin expression is induced in NMC 797 xenografts by (+)-JQ1 (50 mg/kg). In mice models of NMC xenografts, (+)-JQ1 (50 mg/kg) encourages differentiation, tumor regression, and increased survival. [1] When SCID-beige mice are orthotopically xenografted with MM.1S-luc+ cells via intravenous injection, (+)-JQ1 (50 mg/kg) significantly increases overall survival compared to vehicle-treated animals. [2] Mice carrying Raji xenografts experience a highly significant increase in survival when given (+)-JQ1 (50 mg/kg i.p.). [3] |
Enzyme Assay | (+)-JQ1 is a potent and highly specific BET (Bromodomain and extra terminal domain) bromodomain inhibitor, with IC50 of 77 nM and 33 nM for BRD4(1/2) in enzymatic assays. |
Cell Assay | Cells are seeded into white, 384-well microtiter plates at 500 cells per well in a total volume of 50 μL media. The DMEM containing 1% penicillin/streptomycin and 10% FBS is used to cultivate the 797, TT, and TE10 cells. Per403 cells are raised in DMEM containing 20% FBS and 1% penicillin/streptomycin. NMC 11060 cells from patients are expanded in RPMI containing 10% FBS and 1% penicillin/streptomycin. Robotic pin transfer is used to deliver (+)-JQ1 to microtiter assay plates. Cells are lysed and wells are examined for total ATP content using a commercial proliferation assay after 48 hours of incubation at 37°C. Replicate measurements are examined in relation to dose, and estimates of the IC50 are computed using logistic regression (GraphPad Prism). |
Animal Protocol |
In vivo formulations used (reported): 1. Dissolved in 5% dextrose; 50 mg/kg; i.p. injection; Nature. 2010 Dec 23;468(7327):1067-73 2. Dissolved in 10% DMSO and 90% of a 10% 2-hydroxypropyl-β-cyclodextrin solution; Leukemia. 2017 Oct;31(10):2037-2047 3. Dissolved in 1% DMSO+5% Glucose+ddH2O; Cell. 2018 Sep 20;175(1):186-199.e19 4. Dissolved in 20% hydroxypropyl-β-cyclodextrin, 5% DMSO, 0.2% Tween-80 in saline; Mol Cancer Ther. 2016 Jun;15(6):1217-26 5. Dissolved in 1:1 propylene glycol:water; J Biol Chem. 2016 Nov 4;291(45):23756-23768 6. Dissolved in 5% DMSO in 10% 2-hydroxypropyl-β-cyclodextrin solution; Cancer Lett. 2017 Aug 28;402:100-109 |
References |
[1]. Nature . 2010 Dec 23;468(7327):1067-73. [2].Cell . 2011 Sep 16;146(6):904-17. [3]. Proc Natl Acad Sci U S A . 2011 Oct 4;108(40):16669-74. [4]. Nucleic Acids Res . 2013 Jan 7;41(1):277-87. |
Additional Infomation | LSM-6333 is an organonitrogen heterocyclic compound, an organosulfur heterocyclic compound and a tert-butyl ester. |
Solubility Data
Solubility (In Vitro) |
|
|||
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.75 mg/mL (6.02 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.75 mg/mL (6.02 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 3: ≥ 2.75 mg/mL (6.02 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 27.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. Solubility in Formulation 4: 2% DMSO+30% PEG 300+5% Tween 80+ddH2O: 5mg/mL  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1882 mL | 10.9412 mL | 21.8823 mL | |
5 mM | 0.4376 mL | 2.1882 mL | 4.3765 mL | |
10 mM | 0.2188 mL | 1.0941 mL | 2.1882 mL |