Physicochemical Properties
Molecular Formula | C33H34D5CLN4O6 |
Molecular Weight | 628.17 |
CAS # | 718612-73-8 |
Appearance | Typically exists as solid at room temperature |
Synonyms | Irinotecan-d5 hydrochloride; (+)-Irinotecan-d5 hydrochloride; CPT-11-d5 hydrochloride; VAL-413-d5 |
HS Tariff Code | 2934.99.9001 |
Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
ln Vitro | Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, primarily as quantitative tracers during drug development. Studies involving the use of deuterium-labeled drugs in humans have shown that these compounds may have certain advantages over their non-deuterated counterparts. Deuterated drugs have attracted attention due to their potential to affect the pharmacokinetic and metabolic profiles of drugs. Deuttetrabenazine is the first deuterated drug approved by the United States Food and Drug Administration. Deuttetrabenazine is indicated for the treatment of chorea associated with Huntington's disease as well as tardive dyskinesia. Ongoing clinical trials indicate that many other deuterated compounds are being evaluated for use as treatments for human diseases, rather than just as research tools. [1] Irinotecan hydrochloride is a topoisomerase I inhibitor. Irinotecan hydrochloride inhibits the growth of LoVo and HT-29 cells with IC50 of 15.8 ± 5.1 and 5.17 ± 1.4 μM, respectively, and induces similar numbers of cleavable complexes in LoVo and HT-29 cells[3]. Irinotecan hydrochloride inhibits the proliferation of human umbilical vein endothelial cells (HUVEC) with IC50 of 1.3 μM[4]. |
ln Vivo | Daily intratumoral injection of Irinotecan hydrochloride (CPT-11 hydrochloride, 5 mg/kg) for two weeks significantly inhibited tumor growth in rats, an effect also produced by continuous intraperitoneal infusion of osmotic minipumps into mice . However, Irinotecan hydrochloride (10 mg/kg) had no effect on intra-abdominal tumor growth [2]. Irinotecan hydrochloride (CPT-11, 100-300 mg/kg, ip) significantly inhibited tumor growth in HT-29 xenografts from athymic female mice on day 21. Irinotecan hydrochloride (125 mg/kg) plus TSP-1 (10 mg/kg daily) or Irinotecan hydrochloride (150 mg/kg) plus TSP-1 (20 mg/kg daily) were almost equally effective, inhibiting tumor growth by 84% and 84%, respectively. 89%, the combination is more effective than Irinotecan hydrochloride alone at doses of 250 and 300 mg/kg [4]. |
References |
[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019 Feb;53(2):211-216. [2]. Antitumoral effect of irinotecan (CPT-11) on an experimental model of malignant neuroectodermal tumor. J Neurooncol. 2002 Feb;56(3):219-26. [3]. Determinants of the cytotoxicity of irinotecan in two human colorectal tumor cell lines. Cancer Chemother Pharmacol. 2002 Apr;49(4):329-35. Epub 2002 Jan 30. [4]. Thrombospondin-1 plus irinotecan: a novel antiangiogenic-chemotherapeutic combination that inhibits the growth of advanced human colon tumor xenografts in mice. Cancer Chemother Pharmacol. 2004 Mar;53(3):261-6. Epub 2003 Dec 5. |
Solubility Data
Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.5919 mL | 7.9596 mL | 15.9193 mL | |
5 mM | 0.3184 mL | 1.5919 mL | 3.1839 mL | |
10 mM | 0.1592 mL | 0.7960 mL | 1.5919 mL |