Physicochemical Properties
| Molecular Formula | C20H28N10O21P4 |
| Molecular Weight | 868.39 |
| Exact Mass | 868.038 |
| CAS # | 4130-19-2 |
| PubChem CID | 135398585 |
| Appearance | Typically exists as solid at room temperature |
| LogP | -10 |
| Hydrogen Bond Donor Count | 12 |
| Hydrogen Bond Acceptor Count | 25 |
| Rotatable Bond Count | 14 |
| Heavy Atom Count | 55 |
| Complexity | 1670 |
| Defined Atom Stereocenter Count | 8 |
| SMILES | C1=NC2=C(N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OC[C@@H]4[C@H]([C@H]([C@@H](O4)N5C=NC6=C5N=C(NC6=O)N)O)O)O)O)N=C(NC2=O)N |
| InChi Key | OLGWXCQXRSSQPO-MHARETSRSA-N |
| InChi Code | InChI=1S/C20H28N10O21P4/c21-19-25-13-7(15(35)27-19)23-3-29(13)17-11(33)9(31)5(47-17)1-45-52(37,38)49-54(41,42)51-55(43,44)50-53(39,40)46-2-6-10(32)12(34)18(48-6)30-4-24-8-14(30)26-20(22)28-16(8)36/h3-6,9-12,17-18,31-34H,1-2H2,(H,37,38)(H,39,40)(H,41,42)(H,43,44)(H3,21,25,27,35)(H3,22,26,28,36)/t5-,6-,9-,10-,11-,12-,17-,18-/m1/s1 |
| Chemical Name | [[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | Human Endogenous Metabolite |
| ln Vitro | GP4G can penetrate HeLa and fibroblasts and boost their survival with a hyperbolic saturation profile [1]. |
| ln Vivo | In Wistar rats, GP4G (about 1 mL, administered topically to the dorsal region, once daily for 28 days) promotes hair development [1]. |
| Animal Protocol |
Animal/Disease Models: Wistar rats (n = 5)[1] Doses: About 1 mL of the product was applied daily with a cotton swab over a period of 28 days. Route of Administration: Topically applied to the dorsal region (8 cm2, shaved), daily with a cotton swab over a period of 28 days. Experimental Results: Favored hair growth. |
| References |
[1]. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016 Aug;14(8):479-93. |
| Additional Infomation |
P(1),P(4)-bis(5'-guanosyl) tetraphosphate is a purine ribonucleoside 5'-tetraphosphate compound having 5'-guanosyl residues at the P(1)- and P(4)-positions. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a guanosine 5'-phosphate and a purine ribonucleoside 5'-tetraphosphate. It is a conjugate acid of a P(1),P(4)-bis(5'-guanosyl) tetraphosphate(4-). P1,P4-Bis(5'-guanosyl) tetraphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Diguanosine tetraphosphate has been reported in Bos taurus with data available. P(1),P(4)-bis(5'-guanosyl) tetraphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 1.1516 mL | 5.7578 mL | 11.5156 mL | |
| 5 mM | 0.2303 mL | 1.1516 mL | 2.3031 mL | |
| 10 mM | 0.1152 mL | 0.5758 mL | 1.1516 mL |