PeptideDB

GP4G (Diguanoside tetraphosphate) 4130-19-2

GP4G (Diguanoside tetraphosphate) 4130-19-2

CAS No.: 4130-19-2

GP4G (Diguanoside tetraphosphate) is a symmetrical diphosphate nucleoside that can be extracted from cysts of Artemia sa
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

GP4G (Diguanoside tetraphosphate) is a symmetrical diphosphate nucleoside that can be extracted from cysts of Artemia salina. GP4G is an epithelial cell and hair growth regulator.

Physicochemical Properties


Molecular Formula C20H28N10O21P4
Molecular Weight 868.39
Exact Mass 868.038
CAS # 4130-19-2
PubChem CID 135398585
Appearance Typically exists as solid at room temperature
LogP -10
Hydrogen Bond Donor Count 12
Hydrogen Bond Acceptor Count 25
Rotatable Bond Count 14
Heavy Atom Count 55
Complexity 1670
Defined Atom Stereocenter Count 8
SMILES

C1=NC2=C(N1[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(O)OP(=O)(O)OP(=O)(O)OP(=O)(O)OC[C@@H]4[C@H]([C@H]([C@@H](O4)N5C=NC6=C5N=C(NC6=O)N)O)O)O)O)N=C(NC2=O)N

InChi Key OLGWXCQXRSSQPO-MHARETSRSA-N
InChi Code

InChI=1S/C20H28N10O21P4/c21-19-25-13-7(15(35)27-19)23-3-29(13)17-11(33)9(31)5(47-17)1-45-52(37,38)49-54(41,42)51-55(43,44)50-53(39,40)46-2-6-10(32)12(34)18(48-6)30-4-24-8-14(30)26-20(22)28-16(8)36/h3-6,9-12,17-18,31-34H,1-2H2,(H,37,38)(H,39,40)(H,41,42)(H,43,44)(H3,21,25,27,35)(H3,22,26,28,36)/t5-,6-,9-,10-,11-,12-,17-,18-/m1/s1
Chemical Name

[[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [[[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] hydrogen phosphate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Human Endogenous Metabolite
ln Vitro GP4G can penetrate HeLa and fibroblasts and boost their survival with a hyperbolic saturation profile [1].
ln Vivo In Wistar rats, GP4G (about 1 mL, administered topically to the dorsal region, once daily for 28 days) promotes hair development [1].
Animal Protocol Animal/Disease Models: Wistar rats (n = 5)[1]
Doses: About 1 mL of the product was applied daily with a cotton swab over a period of 28 days.
Route of Administration: Topically applied to the dorsal region (8 cm2, shaved), daily with a cotton swab over a period of 28 days.
Experimental Results: Favored hair growth.
References

[1]. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016 Aug;14(8):479-93.

Additional Infomation P(1),P(4)-bis(5'-guanosyl) tetraphosphate is a purine ribonucleoside 5'-tetraphosphate compound having 5'-guanosyl residues at the P(1)- and P(4)-positions. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a guanosine 5'-phosphate and a purine ribonucleoside 5'-tetraphosphate. It is a conjugate acid of a P(1),P(4)-bis(5'-guanosyl) tetraphosphate(4-).
P1,P4-Bis(5'-guanosyl) tetraphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Diguanosine tetraphosphate has been reported in Bos taurus with data available.
P(1),P(4)-bis(5'-guanosyl) tetraphosphate is a metabolite found in or produced by Saccharomyces cerevisiae.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1516 mL 5.7578 mL 11.5156 mL
5 mM 0.2303 mL 1.1516 mL 2.3031 mL
10 mM 0.1152 mL 0.5758 mL 1.1516 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.