PeptideDB

Fludarabine triphosphate (F-ara-ATP) 74832-57-8

Fludarabine triphosphate (F-ara-ATP) 74832-57-8

CAS No.: 74832-57-8

Fludarabine triphosphate (F-ara-ATP) is the bioactive metabolite of Fludarabine . It is a potent, noncompetitive and spe
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Fludarabine triphosphate (F-ara-ATP) is the bioactive metabolite of Fludarabine . It is a potent, noncompetitive and specific inhibitor of DNA primase with IC50 of 2.3 μM. , Ki is 6.1 μM. Fludarabine triphosphate inhibits DNA synthesis by blocking DNA primase and primer RNA formation. Fludarabine triphosphate inhibits ribonucleotide reductase and DNA polymerase, ultimately leading to apoptosis.

Physicochemical Properties


Molecular Formula C10H15FN5O13P3
Molecular Weight 525.1715
Exact Mass 524.986
CAS # 74832-57-8
Related CAS # Fludarabine triphosphate trisodium;Fludarabine phosphate;75607-67-9;Fludarabine;21679-14-1
PubChem CID 22842095
Appearance Typically exists as solid at room temperature
LogP -5.3
Hydrogen Bond Donor Count 7
Hydrogen Bond Acceptor Count 18
Rotatable Bond Count 8
Heavy Atom Count 32
Complexity 836
Defined Atom Stereocenter Count 4
SMILES

C1=NC2=C(N=C(N=C2N1[C@H]3[C@H]([C@@H]([C@H](O3)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O)O)F)N

InChi Key PIOKUWLZUXUBCO-FJFJXFQQSA-N
InChi Code

InChI=1S/C10H15FN5O13P3/c11-10-14-7(12)4-8(15-10)16(2-13-4)9-6(18)5(17)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,17-18H,1H2,(H,22,23)(H,24,25)(H2,12,14,15)(H2,19,20,21)/t3-,5-,6+,9-/m1/s1
Chemical Name

[[(2R,3S,4S,5R)-5-(6-amino-2-fluoropurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate
Synonyms

Fludarabine triphosphate; 2-Fluoro-araatp; F-Ara-ATP; 74832-57-8; Z2ANO885BI; 2-F-Araatp; UNII-Z2ANO885BI; 9beta-D-Arabinofuranosyl-2-fluoroadenine 5'-triphosphate;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets IC50: 2.3 ± 0.3 μM (DNA primase); Ki: 6.1 ± 0.3 μM (DNA primase)[1]
ln Vitro Fludarabine triphosphate is a more powerful inhibitor of the DNA polymerase α/δ activities found in the supernatants of CCRF-CEM cells than it is of the polydeoxythymidylate primase activity[1]. The incorporation of ATP into primer RNA and dTTP into DNA is similarly inhibited by fludarabine triphosphate (10–50 μM)[1].
Cell Assay The effects of fludarabine triphosphate (Fara-ATP), 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (ara-CTP), and aphidicolin on primer RNA and DNA synthesis in human CCRF-CEM leukemia cells were investigated. RNA-primed Okazaki fragment synthesis was monitored by first incubating whole cell lysates for 10 min in the presence or absence of the compound and then following the incorporation of [alpha-32P]ATP and [3H]dTTP into the primer RNA and DNA portions, respectively, of the Okazaki fragments. In whole cell lysates the degree of DNA synthesis inhibition induced by Fara-ATP was directly related to the extent of primer RNA synthesis inhibition over the entire range of Fara-ATP concentrations tested (10-50 microM). In contrast, primer RNA formation was stimulated by concentrations of ara-CTP (25-200 microM) and aphidicolin (0.5-5 micrograms/ml) that inhibited DNA synthesis. The primer RNA recovered from cell lysates incubated with either Fara-ATP, ara-CTP, or aphidicolin was of normal length, predominately 11 nucleotides. Fara-ATP was a more potent inhibitor of the polydeoxythymidylate primase activity than of the DNA polymerase alpha/delta activities present in the 100,000 x g supernatants of CCRF-CEM cells. Fara-ATP was a noncompetitive inhibitor of DNA primase with respect to ATP [50% inhibitory concentration, 2.3 +/- 0.3 (SD) microM, Ki = 6.1 +/- 0.3 (SE) microM] and the Km(ATP)/Ki (Fara-ATP) was 25. The 50% inhibitory concentration values of Fara-ATP for DNA polymerases alpha/delta activities on calf thymus DNA were 43 +/- 1.6 (SD) microM and greater than 100 microM with respect to dATP and dTTP. The effects of ara-CTP and aphidicolin on these enzymes were opposite those seen with Fara-ATP, since 50% inhibitory concentrations of either ara-CTP or aphidicolin for DNA polymerases alpha/delta did not inhibit polydeoxythymidylate primase activity. The results provide evidence that fludarabine phosphate blocks DNA synthesis in CCRF-CEM cells through inhibition of primer RNA formation. In contrast, the accumulation of primer RNA and RNA-primed Okazaki fragments that is induced by ara-CTP and aphidicolin could lead to the rereplication and amplification of chromosomal DNA segments[1].
We have previously developed a highly sensitive LC-MS method to quantitate intracellular F-ara-ATP concentrations in a leukemic cell line. However, quantitation of F-ara-ATP concentrations within CD4(+) and CD8(+) T-lymphocytes from pharmacokinetic blood samples obtained from patients receiving fludarabine therapy is not feasible because of the limited number of T-lymphocytes that can be isolated from each blood sample. Thus, we sought to determine F-ara-ATP accumulation after ex vivo exposure of freshly isolated human CD4(+) or CD8(+) T-lymphocytes to fludarabine. The method was optimized in T-lymphocytes obtained from healthy volunteers, and proved to be a feasible method to determine F-ara-ATP accumulation in patients undergoing HCT[2].
References [1]. Catapano CV, et al. Inhibition of primer RNA formation in CCRF-CEM leukemia cells by fludarabine triphosphate. Cancer Res. 1991 Apr 1;51(7):1829-35.
[2]. Woodahl EL, et al. A novel phenotypic method to determine fludarabine triphosphate accumulation in T-lymphocytes from hematopoietic cell transplantation patients. Cancer Chemother Pharmacol. 2009 Feb;63(3):391-401.
Additional Infomation Antiviral Agents: Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
Results: Considerable variability was observed in F-ara-ATP accumulation in HCT patients (10.5- and 12.5-fold in CD4(+) and CD8(+) cells, respectively), compared to healthy volunteers (1.6- and 1.9-fold in CD4(+) and CD8(+) cells, respectively). Larger variability was also observed in gene expression of transporters and enzymes involved in F-ara-ATP accumulation in HCT patients; however, F-ara-ATP accumulation was not correlated with gene expression, which is in agreement with previous studies. Conclusions: The quantitation of F-ara-ATP accumulation in T-lymphocytes provides a novel tool to evaluate patient sensitivity to fludarabine. This tool can be used in future studies to evaluate whether intracellular F-ara-ATP accumulation is associated with efficacy and/or toxicity in patients receiving fludarabine.[2]

Solubility Data


Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9041 mL 9.5207 mL 19.0415 mL
5 mM 0.3808 mL 1.9041 mL 3.8083 mL
10 mM 0.1904 mL 0.9521 mL 1.9041 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.