PeptideDB

8-Methylsulfinyloctyl isothiocyanate 75272-81-0

8-Methylsulfinyloctyl isothiocyanate 75272-81-0

CAS No.: 75272-81-0

8-Methylsulfinyloctyl isothiocyanate is an isothiocyanate with anti-bacterial effect and significant plant growth inhibi
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

8-Methylsulfinyloctyl isothiocyanate is an isothiocyanate with anti-bacterial effect and significant plant growth inhibitory activity. 8-Methylsulfinyloctyl isothiocyanate impairs COX-2-mediated inflammatory responses in LPS-stimulated primary macrophages.

Physicochemical Properties


Molecular Formula C10H19NOS2
Molecular Weight 233.39396
Exact Mass 233.091
CAS # 75272-81-0
PubChem CID 9794659
Appearance Light yellow to yellow liquid
LogP 3.674
Hydrogen Bond Donor Count 0
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 9
Heavy Atom Count 14
Complexity 200
Defined Atom Stereocenter Count 0
SMILES

CS(=O)CCCCCCCCN=C=S

InChi Key BCRXKWOQVFKZAG-UHFFFAOYSA-N
InChi Code

InChI=1S/C10H19NOS2/c1-14(12)9-7-5-3-2-4-6-8-11-10-13/h2-9H2,1H3
Chemical Name

1-isothiocyanato-8-methylsulfinyloctane
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro In RAW 264.7 macrophages, 8-methylsulphinyloctyl isothiocyanate (1–10 μM), a component of watercress, inhibits nitric oxide and prostaglandin E2 synthesis triggered by LPS[2].
References

[1]. 8-Methylsulfinyloctyl Isothiocyanate as an Allelochemical Candidate from Rorippa sylvestris Besser, Agricultural and Biological Chemistry, Volume 53, Issue 12, 1 December 1989, Pages 3361–3362.

Additional Infomation 8-(methylsulfinyl)octyl isothiocyanate is a member of the class of isothiocyanates that is octyl isothiocyanate in which one of the methyl hydrogens at position 8 has been replaced by a methylsulfinyl group. It has a role as a plant metabolite and an allelochemical. It is an isothiocyanate and a sulfoxide. It derives from a hydride of an octane.
8-Methylsulfinyloctyl isothiocyanate has been reported in Arabidopsis thaliana, Rorippa sylvestris, and Rorippa indica with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.2847 mL 21.4234 mL 42.8467 mL
5 mM 0.8569 mL 4.2847 mL 8.5693 mL
10 mM 0.4285 mL 2.1423 mL 4.2847 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.