PeptideDB

3-Aminobutanoic acid 541-48-0

3-Aminobutanoic acid 541-48-0

CAS No.: 541-48-0

3-Aminobutanoic acid is a beta-amino acid (AA). 3-Aminobutanoic acid protects plants from attack by Phytophthora infesta
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

3-Aminobutanoic acid is a beta-amino acid (AA). 3-Aminobutanoic acid protects plants from attack by Phytophthora infestans. 3-Aminobutanoic acid confers varying degrees of susceptibility to pathogens.

Physicochemical Properties


Molecular Formula C4H9NO2
Molecular Weight 103.12
Exact Mass 103.063
CAS # 541-48-0
PubChem CID 10932
Appearance Typically exists as solid at room temperature
Density 1.1±0.1 g/cm3
Boiling Point 223.6±23.0 °C at 760 mmHg
Melting Point 189 °C (dec.)(lit.)
Flash Point 89.0±22.6 °C
Vapour Pressure 0.0±0.9 mmHg at 25°C
Index of Refraction 1.462
LogP -0.51
Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 3
Rotatable Bond Count 2
Heavy Atom Count 7
Complexity 72.1
Defined Atom Stereocenter Count 0
SMILES

O([H])C(C([H])([H])C([H])(C([H])([H])[H])N([H])[H])=O

InChi Key OQEBBZSWEGYTPG-UHFFFAOYSA-N
InChi Code

InChI=1S/C4H9NO2/c1-3(5)2-4(6)7/h3H,2,5H2,1H3,(H,6,7)
Chemical Name

3-aminobutanoic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


References [1]. Cohen, et al. Local and systemic control of Phytophthora infestans in tomato with DL-3-aminobutanoic acid. Phytopathology. Volume: 84. Issue: 1. Pages: 55-9. Journal
Additional Infomation 3-aminobutanoic acid is a beta-amino acid that is butyric acid which is substituted by an amino group at position 3. It has a role as a metabolite. It is a beta-amino acid and a monocarboxylic acid. It is functionally related to a butyric acid. It is a conjugate acid of a 3-aminobutyrate. It is a tautomer of a 3-aminobutanoic acid zwitterion.

Solubility Data


Solubility (In Vitro) H2O : 25 mg/mL (242.44 mM)
DMSO : 1.96 mg/mL (19.01 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 9.6974 mL 48.4872 mL 96.9744 mL
5 mM 1.9395 mL 9.6974 mL 19.3949 mL
10 mM 0.9697 mL 4.8487 mL 9.6974 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.