| Bioactivity | CHIR-98014 is a potent, cell-permeable GSK-3 inhibitor with IC50s of 0.65 and 0.58 nM for GSK-3α and GSK-3β, respectively; it shows less potent activities against cdc2 and erk2. | ||||||||||||
| Invitro | CHIR 98014 inhibits human GSK-3β with Ki value of 0.87 nM. CHIR 98014 causes GS stimulation in CHO-IR cells and rat hepatocytes, with EC50s of 106 nM and 107 nM, respectively[1]. CHIR-98014 (1 μM) reduces the viability of ES-CCE cells by 52%, with IC50 of 1.1 μM. Moreover, CHIR-98014 in combination with CHIR-99021 results in a significant activation of the Wnt/beta-catenin pathway in ES-D3 cells. In CHIR-98014 treated cells, the T gene expression is induced up to 2,500-fold. CHIR-98014 (1 μM) also yields around 50% Brachyury-positive cells, with EC50 of 0.32 μM[2]. CHIR98014 (10 μM) prevents loss of neurites caused by 20 μM PrP1-30 in cortical and hippocampal neurons, and substantially decreases the amount of dead cells[3]. | ||||||||||||
| In Vivo | CHIR 98014 (30 mg/kg, i.p.) exhibits a significant reduction in fasting hyperglycemia within 4 h of treatment and shows improved glucose disposal during an ipGTT in markedly diabetic and insulin-resistant db/db mice[1]. | ||||||||||||
| Name | CHIR-98014 | ||||||||||||
| CAS | 252935-94-7 | ||||||||||||
| Formula | C20H17Cl2N9O2 | ||||||||||||
| Molar Mass | 486.31 | ||||||||||||
| Appearance | Solid | ||||||||||||
| Transport | Room temperature in continental US; may vary elsewhere. | ||||||||||||
| Storage |
|
||||||||||||
| Reference | [1]. Ring DB, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003 Mar;52(3):588-95. [2]. Naujok O, et al. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes. 2014 Apr 29;7:273. [3]. Zajkowski T, et al. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2228-39. |